Language ID-based training of multilingual stacked bottleneck features
نویسندگان
چکیده
In this paper, we explore multilingual feature-level data sharing via Deep Neural Network (DNN) stacked bottleneck features. Given a set of available source languages, we apply language identification to pick the language most similar to the target language, for more efficient use of multilingual resources. Our experiments with IARPA-Babel languages show that bottleneck features trained on the most similar source language perform better than those trained on all available source languages. Further analysis suggests that only data similar to the target language is useful for multilingual training.
منابع مشابه
Multilingual bottleneck features for language recognition
In this paper, we investigate Multilingual Stacked Bottleneck Features (SBN) in language recognition domain. These features are extracted using bottleneck neural networks trained on data from multiple languages. Previous results have shown benefits of multilingual training of SBN feature extractor for speech recognition. Here we focus on its impact on language recognition. We present results ob...
متن کاملInvestigation of bottleneck features and multilingual deep neural networks for speaker verification
Recently, the integration of deep neural networks (DNNs) with i-vector systems is proved to be effective for speaker verification. This method uses the DNN with senone outputs to produce frame alignments for sufficient statistics extraction. However, two types of data mismatch may degrade the performance of the DNN-based speaker verification systems. First, the DNN requires transcribed training...
متن کاملImproved Multilingual Training of Stacked Neural Network Acoustic Models for Low Resource Languages
This paper proposes several improvements to multilingual training of neural network acoustic models for speech recognition and keyword spotting in the context of low-resource languages. We concentrate on the stacked architecture where the first network is used as a bottleneck feature extractor and the second network as the acoustic model. We propose to improve multilingual training when the amo...
متن کاملAn Investigation of Deep Neural Networks for Multilingual Speech Recognition Training and Adaptation
Different training and adaptation techniques for multilingual Automatic Speech Recognition (ASR) are explored in the context of hybrid systems, exploiting Deep Neural Networks (DNN) and Hidden Markov Models (HMM). In multilingual DNN training, the hidden layers (possibly extracting bottleneck features) are usually shared across languages, and the output layer can either model multiple sets of l...
متن کاملMultilingual hierarchical MRASTA features for ASR
Recently, a multilingual Multi Layer Perceptron (MLP) training method was introduced without having to explicitly map the phonetic units of multiple languages to a common set. This paper further investigates this method using bottleneck (BN) tandem connectionist acoustic modeling for four high-resourced languages — English, French, German, and Polish. Aiming at the improvement of already existi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014